IMPLEMENTING A FORMAL TECHNICAL REVIEW
PROCESS IN A SOFTWARE DEVELOPMENT
| ENVIRONMENT -

- Boniface C. Nwugwo
Engineering Services, ESPC

' Eastman Kodak Company

OBJECTIVES

1. DEFINE TECHNICAL REVIEWS

Definition of Reviews

Informal Reviews

Formal Reviews

Distinguish between Formal and Informal reviews

2. EXPLAIN WHY WE NEED REVIEWS

Illustration with Defect Amplification model
INlustration with Cost impact of early error detection

3. HOW WE DID IT ON OUR PROJECT
Our Software Group: who we are
Our Software Environment
Getting started
Sustaining momentum
Where we are now

4. SOME REVIEW GUIDELINES

Guidelines for doing reviews

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

Slide 1

DEFINITION OF REVIEWS

A Review (any review) - a way of using the collective knowledge of a group of diverse
- people to:

1. Point out needed improvements in a product of a single' person or team.

2. Confirm those parts of a product in which imprdvement is either not desired or
not needed.

3. Achieve technical work of more uniform, or at least more predictable quality
than can be achieved without reviews, in order to make technical work more

manageable.

*4, Confirm traceability of implementation to design and requirements
specifications.

...Pressman [PRES&7]

* Boni's addition to the definition.

Slide 2

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

WHAT IS AN INFORMAL REVIEW?

e Informal Reviews take place all the time. They are an essential part of the real world
programming.

e There is no set way to do them.

° Review and Revise.

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 3

WHAT ARE FORMAL TECHNICAL REVIEWS?

Formal Technical Reviews (FTR) are formal examinations of software products to identify faults (i.e. departures
from specifications and standards). They are a class of reviews that include:

o System Definition Reviews

e Design Reviews

e Walkthroughs

e Inspections

e Test Readiness Reviews

e Functional & Physical Configuration Audits
e Formal Qualification Reviews

e Round-Robin Reviews.

e Other small group technical assessment of software.

5

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 4

FORMAL TECHNICAL REVIEWS [Continued...]

These examinations can be applied to:

e Requirements Speciﬁc.ations
e System Design

e Preliminary Design

e Detailed/Critical Design

e Program/Code

e Test Plans

e User Documentation

e Any other defined development prOduct.

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 5

'OBJECTIVES OF FORMAL TECHNICAL REVIEWS

1 To uncover érrors in function, logic or implementation of the software.

2 To verify that the software under review meets its requirements.

3 To assure that the software'ha_s been represented according to predefined standards.
4 To achieve software that ié developed in a uniform manner.

5 To assure that members of the teém have the same perception of system objectivés.

6 To make projects more manageable.

7 Serve as Training grounds, enabling junior engineers to observe different
approaches to software analysis, design and implementation.

8 Reviews also serve to communicate technical information widely in a project,
supplementing formal written communication.

Slide 6

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

WHAT MAKES A REVIEW FORMAL?

1. A written report on the status of the product reviewed - available to everyone
involved in the project, including management.

2. Active and open participation of everyone in the review group, following some
written rules as to how such a review is to be conducted.

3. Full responsibility of all participants for the quality of the review.

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 7

DISTINCTIONS BETWEEN FORMAL AND INFORMAL REVIEWS

FORMAL REVIEWS | INFORMAL REVIEWS

. Report to Management ° No Report to Managément

o Results reported to all participants o Results reported out to the author.
. Each participant is responsible for the | o Iterative Proces.s.

quality of the review

. The "Presumption of Guilt"

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 8

WHY DO WE NEED REVIEWS?

1. Software reviews are "filters" for the software engineering process.
The water that comes out of the nozzle in your homes are initially full of impurities. If you don't filter the
water, what you'll get from your tap is water full of impurities. Similarly, if you don't filter your software
development process, what you'll get at the end is software full of bugs.

-~

———|]
Medium F
Filter Filter g

2. Technical work needs reviewing for the same reason that pencils need erasers:

To err is human.
Because human beings are responsible for software development, there will be mistakes, and we need to
make corrections when mistakes are made. The way to find mistakes is through formal technical reviews.

Slide 9

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

3. Although people are good at catching some of their own errors, large classes of

errors escape the originator more easily than they escape anyone else.

This is the classical case of oversight. It's very common for people to overlook something not because they
intentionally want to, but because in their minds, they think they did what they thought they wanted to do,
even though that's not the case.

4. To assure that members of the team have the same perception of system

objectives. .

It's very important that everybody involved in a project (the user, designer, implementer, management, etc)
understand what's required. You want everybody to perceive the system the same way. The way to do that is
to conduct formal technical reviews.

Slide 10

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

DEFECT AMPLIFICATION MODEL

Unless defects are "filtered" (i.e., Found & Corrected) during the life cycle ...
1. Some will pass undetected and be released to the field.

2. Others will be amplified during each step of the software development process.

NEWLY GENERATED ERRORS PERCENT
EFFICIENCY ERRORS PASSED
£RRORS / ERRORS PASSED THROUGH FOR ERROR H_TO NEXT PHASE
PREVIOUS ™ DETECTION
PHASE AMPLIFIED ERRORS 1 : X (%)

NOTE: X = amplification factor (ranges from 1 to X) .
where X depends on other factors such as the experience of the people involved, tools used,

development environment, etc.

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 1 1

DEFECT AMPLIFICATION: WITH NO REVIEWS

NEWLY GENERATED ERRORS PERCENT
EFFICIENCY ERRORS PASSED
[
ERRORS / ERRORS PASSED THROUGH FORERROR [TO NEXT PHASE
FROM
PREVIOUS\ DETECTION
PHASE AMPLIFIED ERRORS 1: X (%)
Specifications Preliminary Design Detail Design Code/Unit Testing

Integration Test Validation Test System Test

LATENT ERRORS

NOTE: x = amplification factor

ASSUMPTION: . ‘
Each test step uncovers and corrects 50% of all incoming errors without introducing any new errors.

(Optimistic assumption)

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov. 12 1993,

Slide 12

DEFECT AMPLIFICATION: WITH REVIEWS

NEWLY GENERATED ERRORS PERCENT
_ EFFICIENCY ERRORS PASSED
(]
ERRORS / ERRORS PASSED THROUGH FOR ERROR TO NEXT PHASE
PREVIOUS™___ DETECTION
PHASE AMPLIFIED ERRORS 1: X %)

Specifications Preliminary Design Detail Design Code/Unit Testing

Integration Test Validation Test System Test
| 24 25 3
LATENT ERRORS
NOTE: x = amplification factor
ASSUMPTION:
Each test step uncovers and corrects 50% of all incoming errors without introducing any new errors.

(Optimistic assumption)

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

Slide 13

RESULTS OF TWO ACTUAL EXPERIMENTS

Experiment 1: Seeded 21 errors into a software module. The code was given to two groups of students -
Group A and Group B. Group A performed only Unit Testing, while Group B conducted

* both Code Inspection and Unit Testing.

(Conducted by Prof. Alan Kaminsky of the Software Development &
Management Dept.,Rochester Institute of Technology, 1988)

RESULT: ’
GROUP A GROUP B

Total Errors Uncovered: 11 (52.4%) 19 (90.5%)

Experiment 2: Errors were inserted into code. The code was given to two independent test groups -
Group A and Group B. Group A did only Black-Box Testing, while Group B combined
Black-Box Testing with Code Inspection.

(Taken from Edward Showalter's presentation at the QAI Testing Conference in Orlando,
Florida, December 1991.)
RESULT:
GROUP A GROUP B

Total Errors Uncovered: 65% 85%

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, ' Sllde 1 4

COST IMPACT OF EARLY ERROR DETECTION

Assumptions:

1. An error uncovered during design will cost 1.5 monetary unit to correct.

Relative to this cost, the same error uncovered:
2. Just before testing begins will cost 6.5 monetary units.

3. During testing, 15 monetary units.

4. After release, 67 monetary units.

(Figures based on actual cost data collected for large software projects [IBM81].)
"Implementing Software Inspections," course notes, IBM Systems Sciences Institute, IBM Corp, 1981)

Roger S. Pressman, Software Engineering: A practitioner's Approach, 2nd ed., McGraw-Hill, Inc., 1987, pp-440-442)

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

Slide 15

DEVELOPMENT COST COMPARISON

NO REVIEWS CONDUCTED REVIEWS CONDUCTED
Errors Found _# Unt-Cost Total # Unt-Cost Total
During Design 0 1.5 0.0 255 1.5 38.25
Before Testing 27 6.5 175.5 37.0 6.5 240.50
During Testing 97 15 1455.0 21.0 15 315.00
After Release 13 67 871.0 3.0 67 201.00
2501.5 79475

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 1 6

HOW WE DID IT

Our Software Group: who we are
Our Software Environment

Getting started

Sustaining Momentum

Where we are today

Slide 17

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

" OUR SOFTWARE GROUP: Who We Are

e 2 of 4 Software Groups
Group 1 has 4 Software Engineers
Group 2 has 12 Software Engineers

e 12 have formal education in computing

e Groups were just put together to work on this new project

e Responsibility is to develop real-time embedded software for the Consumer
Imaging photofinishing community

Slide 18

Implementing a formal Technical Review Process in a Software Development\Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

OUR SOFTWARE ENVIRONMENT

PROTOTYPES DOS/C
IBM PC EVALUATION SYSTEMS DEBUGGER
ALGORITHMS
SUN 'PROTOTYPES UNIX/C
SPARC METRIC
REAL-TIME, EMBEDDED
STATIONS SYSTEMS TOOLS

e SOME CROSS DEVELOPMENT

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

Slide 19

FORMAL TECHNICAL REVIEWS: Getting Started

Agreed up front whether or not to do reviews

Defined what reviews entail and which reviews to do
(SQA Plan should outline what reviews to do, the entry and exit criteria for each review, what defects
to track)

Conducted a couple of "pilot" formal reviews -
(Development standards - Code standards; Software Plans - SQAP, SPP, SRS are good candidates)

Assessed the "pilot" formal reviews process
(Found out how the team felt about the process, What went wrong, what went well)

Conducted a formal training on how to do formal reviews for the team
(Allows members of the team to have the same perspective when they do reviews)

Incorporated identified improvements to the formal reviews process
Continued doing formal reviews

Collect Metrics, assess process, and continuously improve on it

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 20

'FORMAL TECHNICAL REVIEWS: Sustaining Momentum

e Ensure that the metrics being collected will be used for improving the process
and nothing else, and make sure everybody understands that

e Listen to the participants and incorporate process improvement suggestions by
the team into the process

e Share the results of each review session with the participants
(Reviewers feel good about themselves when they see that they indeed identified errors)

Implementing a formal Technical Review Process in a Software Dcveloﬁment Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 2 1

GUIDELINES FOR REVIEWS

Guidelines for the conduct of Formal Technical Reviews should be established in advance, distributed to all
reviewers, agreed upon, and then followed.

1.

Review the product, not the producer.
FTR involves people and egos. Errors should be pointed out gently; the tone of the meeting should be loose and constructive;
the intent is not to belittle or embarrass.

Set an agenda and maintain it.
A malady of any meeting is drift. An FTR must be kept on track and on schedule.

Limit debate and rebuttal.

When an issue is raised by a reviewer, if there is no universal agreement on its impact, record the issue for further discussion
off-line, rather than spend time debating the question.

Don't attempt to solve the problem.

A review is not a problem-solving session. Problem solving should be postponed until after the review meeting.

Take written notes.
Sometimes a good idea for the recorder to make notes on a wall board so that wording and prioritization can be assessed by
other reviewers as the information is recorded.

Limit the number of participants.
Two heads are better than one, but 14 are not necessarily better than 4.

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993,

Slide 23

7. Insist upon advance preparation.
All review members must prepare in advance. Written comments should be solicited by the review leader.

8. Develop a checklist for each product that is likely to be reviewed.

A checklist helps the review leader to structure the FTR meeting, and helps each reviewer to focus on important issues. '

9. Allocate resources and time schedule for FTRs.
To be effective, FTRs should be scheduled as a task during the software engineering process. In addition, time should be
scheduled for the inevitable modifications that will occur as the result of an FTR. -

10. Review your early reviews.
Debriefing can be beneficial in uncovering problems with the review process 1tself The very first product to be reviewed
might be the review guidelines themselves and your development standards.

11. Restrict a Design Review to Reviewing One Design.

Don't use a design review to compare two or more designs, but use two or more design reviews to compare two or more
designs. When you try to do two designs at once, the review may turn into a yelling contest for the advocates of the various

alternatives.

12. Conduct meaningful training for all reviewers.
To be effective, all review participants should receive some formal training. (Freedman & Weinberg
[FRES2] estimate a one-month learning curve for every 20 people who are to participate effectively in
reviews).

Implementing a formal Technical Review Process in a Software Development Environment, Kodak Software Quality Mini Conference, Nov 12 1993, Sllde 24

